Controlling Risks Selecting a Safety Integrity Level

IEC 61508

- The IEC 61508 specifies 4 levels of safety performance for a safety function.
- These are called safety integrity levels. Safety integrity level 1 (SIL1) is the lowest level of safety integrity
- safety integrity level 4 (SIL4) is the highest level.
- The standard details the requirements necessary to achieve each safety integrity level.
- These requirements are more rigorous at higher levels of safety integrity in order to achieve the required lower likelihood of dangerous failure.

- Allocation of safety functions to specific protection layers for the purpose of prevention, control, or mitigation of hazards from the accelerator and its associated equipment;
- The allocation of risk reduction targets to safety instrumented functions.

Method for Specifying SIL Requirements

Guide Lines for Determining Necessary Risk Reduction

- Guidelines from the appropriate safety regulatory authority;
- Discussions and agreements with the different parties involved in the application;
- Industry standards and guidelines;
- International discussions and agreements; the role of national and international standards are becoming increasingly important in arriving at tolerable risk criteria for specific applications;
- The best independent industrial, expert and scientific advice from advisory bodies;
- Legal requirements, both general and those directly relevant to the specific application.

Risk Reduction

Controlling Risks: Safety Systems

Other Technology Safety-Related Systems

IEC 61508:

Safety related system* based on technology other than electrical/electronic/programmable electronic (E/E/PE) technology

Example:

Relief valve, disaster monitor, creditable control system functions

*Warning! DOE has a very specific use of the term "Safety Related System", a.k.a. "Safety Significant System." The IEC definition and the DOE definition are not necessarily the same.

External Risk Reduction Facility

IEC 61508:

Measure to reduce or mitigate the risks which are separate and distinct from, and do not use, E/E/PE safetyrelated systems or other technology safety-related systems*.

Example: Shielding, emergency management, activated water containment system

*Warning! DOE has a very specific use of the term "Safety Related System", a.k.a. "Safety Significant System." The IEC definition and the DOE definition are not necessarily the same.

Independent Protection Layers

- Each 'Other Technology' and 'External Risk Reduction' can be credited with risk reduction if:
 - They are effective in preventing the consequence
 - They are independent of the initiating event
 - They are independent of other credited IPLs for a given scenario
 - They are auditable

Safety Function

- Derived from the hazard analysis
- Described as an action taken by the safety system
- Specific to each hazardous event
- Implemented through a combination of:
 - A safety instrumented system (SIS)
 - Other technology safety related system
 - External risk reduction facilities

Safety Functions

Function ID	Safety Function
SF1	Prevent beam transport from exclusion to occupied areas
SF2	Shut off interlocked devices when physical barriers between personnel and hazards are unsecured.
SF3	Shut off interlocked devices upon activation of an ESTOP
SF4	Shut off interlocked devices in support of administrative access to a secure beam enclosure.
SF5	Support search and secure operations prior to facility operations.
SF6	Inhibit operation of radiation generating devices when a high radiation dose rate associated with the device is detected in an occupied area
SF7	Deter unauthorized entry to exclusion areas
SF8	Provide visual indications of unsecured safe, secure safe, and unsafe radiological enclosure status.
SF9	Provide audible warnings of pending unsafe status of a beam enclosure
SF10	Activate audible and visual alarms when the indicated oxygen level in monitored areas drops below 19.5% by volume.

Safety Functions and SIS

- The safety functions allocated to a safety instrumented system (SIS) become performance requirements for the safety system.
 - Effectiveness
 - Timing
 - Sustainability
- Captured in a requirements document

Requirements Specification

- Scope, Context, Assumptions, References
- Mandatory requirements
 - DOE orders, Statutes, Facility Policy
- Safety Functions
- SIL assignments
- Generalized requirements
 - Apply to whole lifecycle
 - Objective based
- Specific requirements
 - May apply to specific parts of the lifecycle
 - Performance
 - Systems/architecture
 - Software
 - Operations and Maintenance
 - Management and Staffing

Identification of Requirements

10.3 SIS safety requirements

10.3.1 These requirements shall be sufficient to design the SIS and shall include the following:

- A description of all the safety instrumented functions
- Requirements to identify and take account of common cause failures
- A definition of the safe state of the process for each function
- A definition of any individually safe process states which, when occurring concurrently, create a separate hazard
- Assumed sources of demand and demand rate
- Required proof test intervals
- The response time for the SIS to bring the process to a safe state
- The safety integrity level and mode of operation for each safety function
- A description of SIS process measurements and their trip points
- A description of SIS process output actions and criteria for successful operations

Identification of Requirements

10.3 SIS safety requirements

10.3.1 These requirements shall be sufficient to design the SIS and shall include the following:

- ... The functional relationship between inputs and outputs (Logic)
- Requirements for manual shutdown (ESTOP)
- Requirements relating to energize or de-energize to trip
- Requirements for resetting the SIS after shutdown
- Maximum allowable trip rate
- (SIS) Failure modes and desired response of the SIS
- Startup procedures
- All interfaces between the SIS and any other system
- A description of the modes of operation of the (Accelerator) and identification of safety instrumented functions required in each mode
- The application software requirements

Identification of Requirements

10.3 SIS safety requirements

10.3.1 These requirements shall be sufficient to design the SIS and shall include the following:

- …Requirements for overrides, inhibits, bypasses including how they will be cleared
- Any action necessary to achieve or maintain a safe state in the event of faults being detected in the SIS (Including human factors)
- The mean time to repair taking in to account travel time, location, spares, ...etc.
- The extremes of all environmental conditions likely to be encountered
- Identification of normal and abnormal modes for both the (Accelerator) and (Accelerator) operational procedures
- Definition of the requirements for any safety function necessary to survive a major accident event (e.g. beam stopper survival)

•

...

Attributes of Specific Requirements – The 'ables

- Requirements must be;
 - Uniquely identifiable
 - Testable
 - Verifiable
 - Traceable

SIL Ranges

	DEMAND MODE OF OPERATION	
Safety Integrity Level (SIL)	Average Probability of Failure on Demand	Risk Reduction
4	≥ 10 ⁻⁵ to <10 ⁻⁴	>10,000 to ≤ 100,000
3	≥ 10 ⁻⁴ to <10 ⁻³	>1000 to ≤ 10,000
2	≥ 10 ⁻³ to <10 ⁻²	>100 to ≤ 1000
1	≥ 10 ⁻² to <10 ⁻¹	>10 to ≤ 100

CONTINUOUS MODE OF OPERATION			
Safety Integrity Level (SIL)	Frequency of Dangerous Failures Per Hour		
4	≥ 10 ⁻⁹ to <10 ⁻⁸		
3	≥ 10 ⁻⁸ to <10 ⁻⁷		
2	≥ 10 ⁻⁷ to <10 ⁻⁶		
1	≥ 10 ⁻⁶ to <10 ⁻⁵		

SIL Allocation

- Performance requirement
- For each safety instrumented function
- Qualitative or quantitative
- Based on:
 - Average probability of dangerous failure per demand (PFD_{avg})

OR

- Failure rate, per hour

Latte

- Qualitative data:
 - robust aroma
 - frothy appearance
 - strong taste
 - burgundy cup

- Quantitative data:
 - 12 ounces of latte
 - serving temperature
 150º F.
 - serving cup 7 inches in height
 - cost \$4.95

Risk Matrix Approach

Risk Matrix Use

- Calibrate risk classifications of the unmitigated accident
 - e.g. "Intolerable, Unacceptable, Tolerable, Acceptable"
 - Apply external safety layers and 'other technology' systems
 - Increase SIL Level until objective met
 OR

Apparent additional risk reduction required

Risk Matrix

Risk matrix set up for hazard type

External Risk Reduction	0						
Other							
Technology							
SII	0					liser Definer	Range
Risk Matrix	Ŭ	Color code	Intolerable		0	Joser Denney	Range
			Undesirable		4	5	
			Tolerable		5	7	
			Acceptable		7	>	
User Defined Likelihood							
Immanent	0	Frequent	3	2	1	0	
1day-1year	1	Probable	4	3	2	1	
1-10 years	2	Occasional	5	4	3	2	
Over life of facility	3	Remote	6	5	4	3	
100-1000 years	4	Unlikely	7	6	5	4	
>1000 years	5	Impossible	8	7	6	5	
			3	2	1	0	
		Consequences	Minimal	Marginal	Critical	Catastrophic	
				< 5 Lost	> 5 lost	Death or	
			First Aid	Work Days	work days	Disability	

Risk Matrix

External Risk Reduction and Other Methods Evaluated

External Risk Reduction	2						
Other							
Technology							
Based Systems	1					User Definer	d Range
Risk Matrix	Ŭ	Color code	Intolerable		0	diser Denned	antange
			Undesirable		4	5	
			Tolerable		5	7	
			Acceptable		7	>	
User Defined Likelihood							
Immanent		Frequent	G	5	4	3	
-	Ŭ	requent				Ŭ	
1day-1year	1	Probable	7	6	5	4	
1							
1-10 years	2	Occasional	8	7	6	5	
Owner life of fearline					_		
Over life of facility	3	Remote	9	8	(6	
100-1000 years	4	Unlikely	10	q	8	7	
	- 1		10	3			
>1000 years	5	Impossible	11	10	9	8	
			3	2	1	0	
		Consequences	Minimal	Marginal	Critical	Catastrophic	
				< 5 Lost	> 5 lost	Death or	
			First Aid	Work Days	work days	Disability	

Risk Matrix

Effect of SIL Levels Evaluated

External Risk Reduction	2						
Other Technology Based Systems							
SIL	3					User Defined	Range
Risk Matrix		Color code	Intolerable		0	4	i nunge
			Undesirable		4	5	
			Tolerable		5	7	
			Acceptable		7	>	
User Defined Likelihood							
Immanent	0	Frequent	9	8	7	6	
1day 1year		Brobable	10	0	0	7	
itay-iyeai		Frobable	10	9	0	,	
1-10 years	2	Occasional	11	10	9	8	
Over life of facility	3	Remote	12	11	10	9	
100-1000 years	4	Unlikely	13	12	11	10	
		- mixely	10	12		10	
>1000 years	5	Impossible	14	13	12	11	
			3	2	1	0	
		Consequences	Minimal	Marginal	Critical	Catastrophic	
			First Aid	< 5 Lost Work Days	> 5 lost work days	Death or Disability	

Risk Graph

- Developed in Germany, used widely
- Incorporates exposure and possibility of avoidance
- Intuitive decision path
- Direct reading of SIL

Risk Graph Use

- Calibrate categories of the graph
 - Consequence
 - Frequency/Exposure
 - Avoidance
 - Demand/Outcome
- Trace each safety instrumented function through to the appropriate box in the "W" columns.

Risk Graph	
Date	
Project	
Evaluator	
Hazard	
Constraints	

Risk Graph

IEC 1 667/98

Example Calibrations

Consequence Categories

[E. Marzal, "Safety Integrity Level Selection"]

Category	Quantitive Description	Qualitative Description
C _A	Minor Injury	Minor Injury
C _B	PLL=0.01 to 0.1	Major injury
Cc	PLL = 0.1 to 1	Death
CD	PLL > 1	Multiple deaths and/or major impact off-site

Example Calibrations

Occupancy/Exposure Categories

[E. Marzal, "Safety Integrity Level Selection"]

Category	Quantitive Description	Qualitative Description
F _A	Occupied/Exposed < 10% of time	Rare to More Frequent
F _B	Occupied > 10%	Frequent to Continuous

Example Calibrations

Consequence Categories

[E. Marzal, "Safety Integrity Level Selection"]

Category	Description	Conditions allowing P _A
P _A	Conditions to right satisfied	 P_A should only be selected if the following conditions are true: The operator will be alerted to
P _B	Conditions to right not satisfied	 Facilities are provided for avoiding the hazard that are separate from the SIS and enable escape from the area. The Time between the operator alert and occurrence of the event is sufficient for necessary actions.

Demand Rate/Probability Categories

[E. Marzal, "Safety Integrity Level Selection"]

Category	Quantitive Description	Qualitative Description
W _A	< 0.02 per year	Slight
W _B	Between 1 and 0.02 per year	Occasional
Wc	> 1 per year	Frequent

Quantitative

- Calculate Initial Risk using risk analysis tools
- Calculate the residual risk using
 - Event Tree
 - LOPA
- Calculate the necessary risk reduction to reach an acceptable level
 - Requires numerical expression of acceptable risk

Quantitative Risk Reduction

 $RR = \frac{Inherent \ Risk}{Acceptable \ Risk}$

Safety Function $PFDavg = \frac{1}{RR}$

Summary

SIL Allocation

Given a complete hazard analysis:

- Define Safety Functions
- Allocate functions to OTBS, ES
- Define requirements for safety instrumented functions (SIF)
- Define SIL requirements for each SIF

